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Abstract. We propose a recommender system which is based on a
semisupervised classification algorithm designed for estimating users’
preferred ranges of features. The system is targeted for new users, and
it infers likings incrementally by presenting two alternatives to users in
each step. To create the learning model, multidimensional scaling is em-
ployed to reduce the original feature space to a low-dimensional space.
Then, the proposed classification algorithm, called geometrical exclusion,
effectively finds a region which is not preferable for users and is to be
excluded from the model in the reduced space. The algorithm consists of
simple geometrical operations that are based on preference information
obtained from users. An experiment by simulation is conducted to mea-
sure the performance of the system, and the result indicates that it can
produce good recommendations with a practical number of user interac-
tion steps. We also report statistics collected from our system deployed
in a commercial web service.

Keywords: Recommender System, Interactive Preference Learning, Mul-
tidimensional Scaling, Geometrical Operations

1 Introduction

Recommender systems have been intensively studied and attracted industry’s in-
terest, and now many web sites are equipped with recommender systems. They



are usually classified into two categories: content-based recommenders, whose
estimation process depends on similarity between items, and collaborative rec-
ommenders, which harness information gathered from people with similar pref-
erences [1, 17]. Collaborative recommendation has been demonstrated to be a
powerful tool to estimate users’ preferences, but to infer new users’ preferences
is intrinsically difficult. This is called the cold start problem [15].

In this paper, we propose a content-based recommender system for estimat-
ing new users’ preferences to tackle the cold start problem. Preferences can be
estimated by feature-wise interaction with the user as in critiquing systems [18],
but it requires a high degree of user effort [13]. Considering the widespread use
of mobile smart devices, such as smartphones and tablets, a complex user in-
terface and/or an interface that needs substantial number of operations would
be unacceptable. To invent a new sophisticated user interface could solve the
problem [3], but to master a new interface would be a burden to casual users.
To promote users’ instant understanding, we opt to simply present two items to
a user each turn and ask her to choose preferred one. Additionally, the proposed
system can produce recommendations from item sets of various sizes.

The recommendation problem is commonly formulated as estimating ratings
of items that have not been seen by a user in the literature[1]. We formulate
it as an online semisupervised classification problem instead. The problem is
intuitively decomposed as follows: 1) creating an initial model from the whole
dataset whose objects are all unlabelled,2) presenting a set of objects selected
from the dataset to a user, where cardinality of the set could possibly be one
but is two in our case, 3) receiving response from the user with labellings of
objects, i.e., either preferred or not preferred, 4) updating the model based on
the labellings, and 5) predicting labels of unlabelled objects by referencing the
model. Precision of the prediction would increase through iterating the steps 2-4.

Our system uses a model embedded in a two-dimensional space as the initial
model and employs multidimensional scaling (MDS) [5] to create it. MDS is
a technique to construct a low-dimensional representation while preserving the
distances between objects as well as possible. It has been mainly used as a
visualisation technique to convert high-dimensional dataset to two- or three-
dimensional image, as in [2]. Some recommender systems employ MDS or related
visualisation techniques to create a two-dimensional map to be presented to a
user, and user navigation is done in that map directly [6, 10, 9]. Giamattei and
Sholtz employed correspondence analysis to visualise product recommendations
and catalogues in a two-dimensional space [7]. In [16], MDS is used to embed
both labelled and unlabelled objects in a reduced space, and linear discriminant
analysis (LDA) is taken in the reduced space to classify objects. Khoshneshin and
Street proposed a collaborative filtering algorithm that simultaneously embeds
users and items in a reduced space by using MDS [11]. Le and Lauw proposed
an embedding algorithm of both users and items based on a Bayesian approach,
given preference data of items evaluated by users [12]. In [14], the problem of
localising new users and items into an existing embedding is formulated as a
quadratic programming. Grad-Gyenge et al. proposed a recommendation method



based on a graph embedding [8]. To the best of our knowledge, there has been
no attempt to propose an online classification algorithm which directly updates
a low-dimensional model.

We present the proposed algorithm, which we call geometrical exclusion, used
in our system in Section 2. Our algorithm has several number of unique features,
such as fast learning inspired by binary search and regularisation of the learning
process by referring to the original feature space to mitigate the degraded preci-
sion caused by restricting to learn in a two-dimensional space. In Section 3, we
report the result of a simulation based experiment to measure the performance
of our system with varying sizes of item sets. The experimental result shows that
our algorithm is able to recommend favourable items with relatively steady and
practical number of steps. Further, we deployed our system as a commercial web
service as reported in Section 4. The result also indicates that our algorithm
performs well in a production setting. We conclude our discussion in Section 5
with some notes on future work.

2 Geometrical Exclusion

In this section, we explain how to select objects to be labelled by a user and
how the model is updated geometrically by using the information obtained from
labelled objects and by excluding a region of the model.

2.1 Basic Idea

In our setting, the system presents a pair of objects to be labelled to a user.
Assuming that there is no prior knowledge about user’s liking, an efficient way
is to select objects in a space along the line of binary search. We illustrate this
by an example. Suppose we have a feature f1 that ranges from 0 to 100. We
want to know user’s liking as a subrange, so we divide the range at the midpoint
and present representative objects, which we call candidates, of each divided
subrange to the user. Here we take candidates c1 and c2 from around 20 and
80 respectively since they are clearly distinguishable and not too extreme. If
the user chooses c1, we retain [0, 50] and discard the rest. In the next turn, we
divide the remaining range, present candidates around 10 and 40 to the user and
discard a half according to the user’s choice. Estimation proceeds in the same
way until the size of the remaining range turns to be less than some threshold.

Unfortunately, the above estimation process of user’s liking cannot be sraight-
forwardly extended to two features in a two-dimensional space. The easiest way
is to select on-axis candidates and to estimate the range feature-wise, but we
consider a more general case where candidates are selected from an arbitrary
axis pivoting at the centre. Suppose that there are two features, and we present
two candidates to the user at each turn. In this case, however, we can see that a
single turn is not sufficient to determine the right direction to proceed, because
we cannot determine which of the features the user takes more seriously when
she chooses one candidate. In other words, one feature of a candidate chosen by



the user may not be preferable, but she chooses the candidate in favour of the
other feature. So we have to take another axis that is orthogonal to the previous
one and present another pair of candidates, augmenting the information about
user’s liking. If we extend the argument to n-dimensional case this way, the sit-
uation gets worse and more complicated since we need an exponential number
of candidate pairs, i.e. 2n−1, to infer user’s liking.

Our solution to treat a high-dimensional feature space is to reduce its di-
mensionality. We employ classical MDS using Euclidean distance as the distance
measure [5]. We focus our argument on reduction to a two-dimensional space in
this paper, but the algorithms themselves could be applied to other cases.

To estimate original feature values from coordinates in the reduced space, we
can employ linear regression. By calculating ranges of the original features from
a survived region in the reduced space, we can predict whether a new object is
preferred by a user. Regression is also applied to check whether a selected pair of
candidates is appropriate to be labelled by a user because magnitude relation of
a feature of the candidate pair does not necessarily coincide with the slope of a
regression plane. Candidate pairs that have a feature whose magnitude relation
does not coincide with a regression plane are not presented, and this regularises
the learning process of user’s liking as ranges in the original space.

2.2 Algorithm of Geometrical Exclusion

After reducing the dimensionality to two, we partition the search space so as
to make it filled with tiles. Hereafter we can employ various kinds of operations
applicable to a pixelated plane by treating a tile as a pixel, including elementary
geometrical operations like drawing a line. The learning process is therefore easily
and directly visualisable. We believe that this property of our algorithm makes
learning process fairly tractable and parameter tuning relatively straightforward.

The algorithm of geometrical exclusion is shown in Fig. 1. We first calculate
the mean m of the distribution of remaining data in the reduced space. Next, we
find a main-axis a1 so that the divergence along a1 is the largest, by applying
principal component analysis after setting m as the origin of the space, and then
find a sub-axis a2 which is orthogonal to a1 and goes through m (line 5). For
each axis ai (in a1 and a2), we calculate the distribution of remaining data along
ai, then select pivot points p1 and p2 on ai at 20 and 80 percentile respectively
(line 7). We find candidates c1 and c2 so that they are the nearest to p1 and
p2 respectively and their magnitude relations of all features coincide with the
ones estimated from coordinates in the reduced space and regression planes for
each feature (lines 8-10). We then display c1 and c2 to the user and ask her
which one she prefers (line 11). Let rpi and rni be the candidate points that are
preferred and not preferred respectively (line 12). Then we determine a region
to be excluded based on rn1 and rn2 , collect tiles in the region and exclude data
on the tiles as follows. We set a boundary consisting of one line segment l1 from
rn1 to rn2 and two half-lines l2 and l3 (line 14). One half-line starts from rn1 ,
taking the same direction as the direction from m to a pivot point from which
rn1 is selected. The other half-line is drawn likewise. We divide the space by the



1: Initialise search space S
2: repeat
3: Fill S by colour k1
4: Analyse S by principal component analysis
5: a1,2 ← axes corresponding to two eigenvalues
6: for i← 1, 2 do
7: Select pivot points p1,2 from axis ai
8: repeat
9: Select candidates c1,2 around p1,2 respectively

10: until coincide?(S, c1,2)
11: Display candidates c1,2 and wait response
12: rpi ← candidate chosen, rni ← candidate not chosen
13: end for
14: Place line segments l1,2,3 based on the position of rn1,2
15: Draw l1,2,3 on S by colour k3
16: Select an arbitrary tile t not belonging to l1,2,3
17: Flood-fill S from t by colour k2
18: k← colours of rp1,2 and the mean
19: u← subscript of the majority of colours in k
20: Exclude k3−u and k3 coloured tiles from S
21: until converged?(S)

Fig. 1. Geometrical exclusion algorithm.

(a) Convex case. (b) Concave case.
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Fig. 2. Schematic diagrams of geometrical exclusion.

boundary (lines 15-18). Then we decide which region is not to be excluded based
on the majority rule (line 19). The region which contains more points within rp1 ,
rp2 and m than the other is to be remained. Complement of the majority region
(i.e. the boundary and the minority region) is to be excluded (line 20).

Our strategy to determine the excluded region is to collect tiles in the region
by colouring them like drawing a picture. The shape of the excluded region may
be concave (see Fig. 2), so its formal analysis is difficult because it needs careful
treatment of exceptions. Instead, we simply draw a boundary and fill a region
isolated by the boundary. We employ Bresenham’s algorithm [4] for the former,
and a classic flood fill algorithm for the latter respectively.



Table 1. Correlation matrices used in the experiment.

(1) Rental resi-
dences.

F.1 F.2 F.3 F.4

1.0 - - -
0.8 1.0 - -
-0.2 0 1.0 -
-0.1 0.3 0.0 1.0

(2) Three sepa-
rated groups.

F.1 F.2 F.3 F.4

1.0 - - -
0.9 1.0 - -
0 0 1.0 -
0 0 0 1.0

(3) Three groups.

F.1 F.2 F.3 F.4

1.0 - - -
0.9 1.0 - -
-0.1 0.3 1.0 -
0.2 -0.2 0.1 1.0

(4) Two separated
groups.

F.1 F.2 F.3 F.4

1.0 - - -
0.85 1.0 - -
0 0 1.0 -
0 0 -0.7 1.0

3 Experimental Evaluation by Simulation

We conducted an experiment to evaluate the performance of our algorithm, with
artificially generated datasets and a user behaviour simulator. The reason to rely
on a simulation is that we need to compare the resulting performance to those of
other systems, measured under the same experimental setting and user inputs.

The datasets consists of randomly generated objects, each of whom has four
features. Each feature is real-valued and sampled from the standard normal
distribution. We prepared several number of datasets with differing sizes and
correlations of features. Correlation between each feature is one of the key fac-
tors of our algorithm’s performance, so we tested against four configurations
of feature correlations, as shown in Table 1. Rental residences configuration is
reproduced from the correlation matrix of the actual rental residences dataset,
and the other three configurations are artificially chosen for comparison.

The design of the simulator roughly follows a way employed in [13]. In each
trial, the simulator randomly selects an object from the dataset at first, and
it is used as a target object during the trial. Additionally, a set consisting of
objects similar to the target object, including the target object itself, found
within the dataset is constructed, and we call it the target set of the trial.
Members of the target set are objects whose every feature value falls within a
certain range, centred at values of the target object. We tested several number
of width configurations of the range, relative to the standard deviation σ of the
feature values, from ±0.2σ to ±1.0σ. Next, the simulator runs an algorithm to
be tested and get two objects recommended by the algorithm. If at least one of
the recommended objects matched an object in the target set, the trial finishes
successfully. When both objects failed to match, the simulator calculates the
Euclidean distance between the target object and each recommended object and
takes the closer one to the target object. The object chosen above is passed
to the algorithm as if it were a user input. Then the algorithm produces next
recommendation, and the simulation iterates this way automatically.

To make an automatic simulation possible, without relying upon actual users’
behavioural data, we employed an experimental setting that reflects reality in
some degree, though significantly simplified. A user can compare two items based
on Euclidean distance to the target item, and she chooses a closer one as her
preferred item. This is based on assumptions that users have clear figures of ideal
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Fig. 3. Average number of steps and fail rate. Default data size, width and correlation
configuration are 10,000, 0.6 and rental residences resp.

Table 2. Average sizes of target sets. Data size is 10,000 and correlation configuration
is rental residences.

Width ±0.2σ ±0.4σ ±0.6σ ±0.8σ ±1.0σ
Target set size 4.9 52.5 218.1 559.6 1099.7

items they want to buy, and also they can precisely measure the distance between
an ideal item and a presented one, comparing each feature independently. This
may seem too unrealistic, but we want to show basic characteristics and relative
advantage of our algorithm here, in a clear setting involving few confounding
factors, ensured by such strong assumptions.

We compared the performance of three algorithms with slight modifications:
Geometrical Exclusion, More Like This (MLT) [13], Weighted More Like This
(wMLT) [13]. In order to make wMLT work, we had to discretise values of
features before comparison. We are aware of potential influences that the way of
this discretisation may have, but we simply divide the value range of each feature
into 0.2σ width ranges in this experiment, to keep the number of parameters we
need to examine as few as possible. Another difference to McGinty’s setting is
that the initial pair of objects to be presented for MLT and wMLT are selected
randomly in our experiment.

We ran the simulation with varying data sizes, width of the target set range
and correlation configurations. Results are averaged over 100 runs for each set-



ting and are shown in Fig. 3 and Table 2. Fig. 3(a) clearly indicates that our
algorithm is able to produce favourable recommendations within the range of
practical number of steps under a realistic setting. The number of steps neces-
sary to recommend a preferred item varies steadily around 10 for all size settings.
This contrasts with that of the MLT and wMLT algorithms, whose number of
steps increases logarithmically as the data size increases. The relative target set
size for the case of 10,000 objects, ±0.6σ width and rental residences correlation
configuration is about 2 %, as shown in Table 2, and this is a moderate number
for our service. Standard deviation of the steps under the above setting is 8.57
for our algorithm, whereas that of MLT and wMLT are 18.87 and 43.16 respec-
tively. Fig. 3(b) shows that the number of steps decreases when the target set
size increases for all three algorithms, and this conforms to our intuition. Our
algorithm outperformed MLT and wMLT in all five width settings. Correlation
configurations are arranged from the most difficult to recommend, rental resi-
dences, to the easiest, two separated groups. The number of steps necessary for
our algorithm, shown in Fig. 3(c), decently reflects those relative difficulties.

Our algorithm occasionally fails to recommend a preferred item because its
tile-wise exclusion mechanism may drop all the tiles that contain target objects
before presenting them to the user. In Fig. 3(d), fail rate statistics with varying
data sizes and width are shown. Fail rates for the range of width broader than
or equal to ±0.6σ are kept fairly low for all data sizes.

4 Deployment as a Web Service

We implemented the proposed algorithm as an online recommender system em-
bedded in a commercial web service to search rental residences, and we made our
service publicly accessible during five weeks. During this period, we collected log
data to record user behaviour, from which we obtained statistics shown below.

The rental residence dataset of our system has four integer-valued features:
monthly rent, floor area, age and distance from the nearby station. These features
are selected out of several tens of available features, considering suggestions by
domain experts. The dataset is grouped by nearby train/subway station. The
number of groups is several thousand, and the number of residences contained
in each group ranges from one to nearly ten thousand.

A user of our service is asked to choose a station first. Then the system loads
the dataset and creates an initial model specific to that station. After the setup,
two residences are displayed and the user is asked to choose more preferable one
(see Fig. 4). The learning step progresses in accordance with the algorithm of
the geometrical exclusion, however, to enhance usability, we made a modification
so that the steps cannot be repeated more than four times. After the learning
steps, the system computes ranges of the features, which represent user’s likings
for rental residences. Finally, residences classified as preferred are displayed.

As a result of the publicly opened deployment, the total number of sessions
was 6,318, though, the number of sessions with user activity was 2,963 (46.9
%), meaning that more than half of the sessions finished with no user responses.



2. Features of the residences2. Features of the residences

1. Floor plans / photos1. Floor plans / photos

4. Number of operations to complete4. Number of operations to complete

3. Buttons to choose a residence3. Buttons to choose a residence

Fig. 4. A screenshot of the prototype displaying 1. floor plans and 2. features of two
residences. When a user presses 3. one of the buttons at the bottom which is under a
preferable residence, 4. number of operations left is decremented and new residences
are shown. Several parts containing sensitive information are blurred.

Meanwhile, 1,970 (31.2 %) sessions were completed, that is, substantial amount of
users finished the learning process and got final recommendations. The number
of unique users who completed their sessions was 1,455, which was 38.1 % of the
total number of unique users, 3,815. The average number of sessions per user
was 1.83, and its standard deviation was 8.63. Average time consumed to finish
the process was 144 seconds, and its standard deviation was 147. Considering
the above rate of completion, this falls within a tolerable range of ordinary users.

5 Conclusion and Future Work

We presented a novel recommender system that directly utilises a two-dimensional
space, reduced from the feature space, to embed a learning model for semisu-
pervised classification. The proposed learning algorithm is based on geometrical
operations on the reduced space. By a simulated experiment, we showed that our
system is able to estimate preferred ranges of features effectively. The number
of steps necessary to complete the estimation is kept within a practical range
and stable enough with varying sizes of item sets. We believe that this property
made our system amusing for many users involved in an open trial, and thus, it
resulted in high completion rate.

As future work, we plan to formally analyse properties of our algorithm such
as convergence of the learning process by geometrical exclusion. In addition, it
is desirable to measure our system’s performance in a “real” setting rather than
in a simulated experiment. Ideally, recommender systems’ performance should
be compared in a practical production environment in an A/B test fashion.
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