Prediction of Regional Goods Demand Incorporating the Effect of Weather
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Abstract—Precise prediction of the goods demand is an
important element of the supply chain management because
we can optimise the level of stock based on predicted demand.
Demand of goods may vary influenced by numerous factors,
including price elasticity and weather, which we focus in this
paper. We analysed daily sales data of consumer goods collected
from Point of Sale (POS) systems of Japanese retailers, mostly
supermarkets, which consist of records of price and quantity
sold for each item, spanning several years. Demand may change
according to regional preferences, so we built prediction models
for each region by estimating demand curve of each item by
employing linear regression and neural networks. We show
that there are regional differences of the demand itself and
also regional differences of the effect of weather.

Keywords-goods demand; effect of weather; linear regres-
sion; neural network;

I. INTRODUCTION

Sales forecasting is a key component of the organisational
management because it affects various functions of the
organisation[1]. Manufacturing processes and supply chains
are no exceptions. If a company is able to make the sales
forecasting more accurate, the amount of stock accumulating
in production lines, warehouses and retailers and also lead
time to end users can be reduced. To forecast the sales, it
is necessary to store past sales data and to make prediction
models based on the stored data.

There are many studies that try to forecast fresh food
sales using sales record collected from Point of Sale (POS)
systems. Doganis et al. employed a specially designed radial
basis function neural network method in combination with
a genetic algorithm to predict daily sales of fresh milk in
Athens, Greece[2]. Their algorithm is designed for time
series prediction and performs better than linear time series
methods. Lee et al. compared logistic regression, mov-
ing average and back-propagation neural network methods
and concluded that logistic regression could perform better
than moving average and back-propagation neural network
methods to predict whether discarding food happens[3].
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Their data are collected from a POS system of a single
convenience store in Taiwan.

In this study, we estimate demand curves of items sold
in supermarkets and analyse the effect of weather to the
demand in order to forecast the daily sales. We also take into
account regional differences of the effect of weather. For this
objective, we use sales data collected from POS systems of
supermarkets located in various regions in Japan. We employ
both linear and nonlinear methods, namely linear regression
and neural network respectively, to build prediction models
from the sales data.

II. DATA

We collected and examined two datasets, one is a collec-
tion of daily sales records gathered from Japanese retailers,
and the other is the history of weather related metrics
distributed by a governmental agency. Our goal is to estimate
the price elasticity, or the demand curve more specifically, of
each item, considering the effect of weather by combining
these two datasets.

A. Daily sales data

In this study, we analyse daily sales data of consumer
goods collected by Nikkei Digital Media, Inc. from the
POS systems of Japanese retailers, mostly supermarkets. The
sales data comprises several number of tables, including the
sales table storing daily sales and quantity sold per each store
and item. Each record of the sales table has store code, date,
item code, sales and quantity sold fields, as shown in Table I.
The item code is the Japanese Article Number (JAN), which
is a globally unique identifier of manufacturers and their
items. The sales table has approximately 3 billion records,
and they are tied to the information on 1,500 stores and 3
million items stored in other tables. All the data are stored
in a single instance of the PostgreSQL database, and the size
of the database, including indices for several fields, is nearly
1 TB.



Table I
RECORD EXAMPLES IN THE SALES TABLE. ITEM CODES ARE
ANONYMISED.

Store Code | Date | Item Code | Sales | Quantity Sold
1 2009/10/01 HAAAA AR RT ] 3 3048 1
1 2009/10/01 HdckdR Rk R ] 3D 1029 1
1 2009/10/01 Hdkskckkk R 5 5() 760 2
1 2009/10/01 FAAFAFAFEXGIS 872 4
1 2009/10/01 HdRdR R RER()D6 284 1
2 2009/10/01 HdAFAFARFEXS550) 1140 3
2 2009/10/01 HdRdk Rk RR (IS 436 2
2 2009/10/01 FRERERREREXQDL | 3048 1
2 2009/10/01 FdAFARERFRERQA() | 2858 1
2 2009/10/01 Hdkdckckak k430 | 2858 1

The data contain records of more than 5 years, from 1
October 2009 to 30 November 2015, but we selectively
used records spanning 4 years, from 1 November 2011 to
31 October 2015, for some reasons. We excluded records
belonging to first 2 years because Japan experienced a huge
earthquake in March 2011, the Tohoku earthquake, that
involved a major tsunami and subsequent nuclear power
plant failures. The earthquake had significant impact on
economic activities in Japan[4], not only of directly damaged
areas, but also of surrounding broad areas, and the nation-
wide impact was observed as more than 1 point downward
revision of GDP growth estimates by the Bank of Japan.
Considering this immediate effect to economic activities and
a possibility of structural change after the earthquake, we
opted to use records starting from more than a half year
after the earthquake. We also excluded records of the last
month of the data because it was necessary for the mode
price calculation, which we will explain later.

We limit the scope of the analysis to well sold items in
order to avoid the problems coming from data sparseness.
We counted the number of records for each item in the sales
table, whose top amounts to about 423,000 records in total,
as shown in Table II, which means that this item is sold in
nearly 290 stores daily on average.

Table 1T

TOP 10 ITEMS IN THE SALES TABLE.

Item Code [ Number of Records
4902102072618 422693
4902705104167 422558
4902102069359 412273
45019517 412230
4902102084178 411119
4901411011523 409652
49722741 407743
4901411011547 406670
4903110063278 406483
4901340689213 404653

The geographic locations of stores nearly cover entire
Japan, but the locations are not randomly selected. The sales
data are collected from contracted supermarket companies,

and the companies and their stores are not equally distributed
among the areas. In this study, we select 4 areas among 47
in Japan, prefectures in the Japanese official terminology.
We choose them from the top 5 of the area list sorted by
the number of stores they have, as shown in Table III. This
is because we want to avoid problems which arise from data
sparseness when we compare characteristics of the areas, as
in the case of the items. They are located more than 500 km
apart each other.

Table IIT
TOP 5 AREAS IN THE SALES TABLE IN TERMS OF THE NUMBER OF
STORES.
Prefecture [ Number of Stores
Kanagawa 182
Hokkaido 116
Fukuoka 99
Tokyo 90
Osaka 68

B. Daily weather data

For analysing the effect of weather, we collected daily
weather data from the web site of the Japan Meteorological
Agency (JMA)[5]. All Japanese prefectures have JMA’s ob-
servation facilities, so we can obtain representative weather
records for every area we analyse. What we can retrieve from
the site are string representation of weather, atmospheric
pressure, precipitation, temperature, humidity, wind speed
and direction, sunlight hours, snowfall and snow depth.
Some of them are sub-categorised like maximum, mini-
mum and average temperature. Slightly different weather
characteristics of each area can be seen in the records of
total precipitation and maximum temperature, smoothed by
7 days moving average, in Figures 1 and 2 respectively.
Each area has different peak of rainfall, and the temperature
of Hokkaido is significantly lower than other three.

We can see the relationships between weather related
metrics by a correlation matrix, as shown in Table IV. It
is clearly seen that variables belonging to the same category
have strong correlations, and this can be confirmed by seeing
a multi-dimensional scaling (MDS) plot of the correlation
matrix, as in Figure 3, by taking 1 - correlation coefficient as
distance. This indicates that selecting one variable from each
category suffices for the analysis of the effect of weather.
Considering this observation and other related factors like
data sparseness, we selected following variables as the
explanatory variables of the analysis:

« average atmospheric pressure at observatory
« total precipitation

e Mmaximum temperature

e minimum humidity

e maximum wind speed

o sunlight hours

o snow depth



Table IV

CORRELATION MATRIX OF WEATHER METRICS.

Pressure at Observatory 1 0.49 -0.09 -0.11 -0.11 -0.14 -0.16 -0.13 -0.23 -0.13 0.04 -0.07 -0.10 0.08 -0.06 0.00
Pressure at Sea Level 0.49 1 -0.26 -0.27 -0.26 -0.48 -0.46 -0.50 -0.32 -0.29 -0.16 -0.21 -0.24 0.15 -0.00 0.00
Total Precipitation -0.09 -0.26 1 0.85 0.73 0.08 0.04 0.12 0.41 0.39 0.09 0.15 0.17 -0.37 0.07 -0.00
1h Max Precipitation -0.11 -0.27 0.85 1 0.92 0.14 0.10 0.17 0.38 0.36 0.07 0.14 0.17 -0.34 0.03 -0.02
10m Max Precipitation | -0.11 -0.26 0.73 0.92 1 0.16 0.13 0.20 0.38 0.35 0.05 0.13 0.16 -0.33 0.02 -0.01
Mean Temperature -0.14 -0.48 0.08 0.14 0.16 1 0.99 0.99 0.28 0.29 -0.08 -0.13 -0.17 0.15 -0.24 -0.32
Max Temperature -0.16 -0.46 0.04 0.10 0.13 0.99 1 0.95 0.21 0.18 -0.10 -0.13 -0.17 0.24 -0.25 -0.33
Min Temperature -0.13 -0.50 0.12 0.17 0.20 0.99 0.95 1 0.35 0.38 -0.07 -0.12 -0.17 0.04 -0.22 -0.30
Mean Humidity -0.23 -0.32 041 0.38 0.38 0.28 0.21 0.35 1 0.90 -0.18 -0.14 -0.17 -0.56 0.10 0.03
Min Humidity -0.13 -0.29 0.39 0.36 0.35 0.29 0.18 0.38 0.90 1 -0.11 -0.13 -0.16 -0.61 0.05 0.01
Mean Wind Speed 0.04 -0.16 0.09 0.07 0.05 -0.08 -0.10 -0.07 -0.18 -0.11 0.85 0.80 0.00 0.05 0.05
Max Wind Speed -0.07 -0.21 0.15 0.14 0.13 -0.13 -0.13 -0.12 -0.14 -0.13 0.85 1 0.93 -0.01 0.09 0.08
Instant. Wind Speed -0.10 -0.24 0.17 0.17 0.16 -0.17 -0.17 -0.17 -0.17 -0.16 0.80 0.93 1 -0.04 0.10 0.11
Sunlight Hours 0.08 0.15 -0.37 -0.34 -0.33 0.15 0.24 0.04 -0.56 -0.61 0.00 -0.01 -0.04 1 -0.12 -0.08
Snowfall | -0.06  -0.00 0.07 0.03 0.02 -0.24  -0.25 -0.22 0.10 0.05 0.05 0.09 0.10 -0.12 1 0.46
Snow Depth 0.00 0.00 -0.00 -0.02 -0.01 -0.32 -0.33 -0.30 0.03 0.01 0.05 0.08 0.11 -0.08 0.46 1
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Figure 1. Record of daily total precipitation. Figure 2. Record of daily maximum temperature.

III. METHODS

To estimate demand curves, we built prediction models of
the quantity sold by employing two well-known methods,
namely linear regression and neural network. The former
is probably one of the most simple prediction methods,
but it is easy to manipulate, and the resulting parameters
are easily interpretable. The latter can incorporate nonlinear
characteristics of the dataset into the model and are expected
to fit well for such dataset that has strong nonlinearity, but
the parameters hardly have interpretable meanings generally.
In addition, we tested some configurations of deep neural
networks to improve the prediction accuracy.

After building prediction models, we can obtain demand
curves by fixing explanatory variables other than price and
yielding predicted values of the quantity sold in response to

price change. We adopted following variables as explanatory
variables:

e quantity sold in the previous day

o day of the week

e season

« weather related variables listed in the previous section
e price

« sale flag, which we will explain in this section

A. Mode price calculation and sale flag

The sales data do not contain direct indicators of special
sales where some items are sold at lower prices than usual
during a limited period of consecutive days. In Figure 4, it
can be seen that the price of an item is not continuously
changed but split up into normal and sale prices. Many
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Figure 3. MDS plot of the relationships between weather metrics. Axes
have no particular meanings.

supermarkets in the west of Japan customarily fix their sale
date at a particular day of week. Normally, items sold at a
sale price are expected to be sold better than usual, and the
amount of increase of the quantity sold can be, at least partly,
explained by the price elasticity. As an example, increasing
tendency of the average quantity sold according to the level
of price down can be observed in Figure 5. Nevertheless,
there would be another factor that affects the amount of
increase of the quantity sold: the mere fact that a sale is
underway.

We tried to incorporate this factor, which indicates
whether a sale is underway, into our models. At first, we
calculate the mode price of each item for each day, based
on recorded prices of the period of 28 days before and after
the target day. Because the sale data have solely the daily
sales field, which is the sum of prices of each instance of an
item sold during a day, and an item price is calculated by
dividing the daily sales by the quantity sold, it can take a real
value. This makes the simple calculation of the mode price
untrustworthy, so we make histograms of the price for each
time window, thus obtaining the mode prices by picking the
tallest bins.

Next, we calculate the standard deviation of the mode
price, and the days where an item is sold at a price below
1o of the mode price of the time window are considered sale
days of that item. In Figure 6, a weekly pattern of price drop
can be seen, and sale days indicated by dots are effectively
identified. This sale day information is incorporated into the
models as the sale flag.
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Figure 4. Histogram of price showing the number of days in which an
item is sold at each price bin.
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Figure 5. Average daily quantity sold per price bin.
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Figure 6. Price record example with mode price and sale flags. Red and
blue lines represent price and mode price respectively, and magenta dots
indicate days where the sale flag is on.

B. Prediction by linear regression

We built prediction models of the daily quantity sold for
each area and item with the aforementioned explanatory
variables by linear regression. The formulation is very
straightforward and without regularisation terms because
explanatory variables are not so many, and highly correlated
variables are already filtered out. The quantity sold is
normalised to [0, 1] real-valued interval in order to absorb
differences of the size of stores and the expected quantity
sold of items. As a by-product of this normalisation, we can
compare the prediction performance of models for different
items simply by root mean squared error (RMSE).

C. Prediction by neural networks

We employed the nnet package[6] for R to build and train
neural network based models. nnet is an implementation
of simple feed forward neural networks having only one
hidden layer, like a network shown in Figure 7. Input and
output variables are exactly the same as the explanatory and
predicted variables in the linear regression case, and we used
the linear activation function (or equivalently, no activation
fuction).

We can optimise resulting models’ prediction performance
by tuning the controllable hyperparameters of nnet: number
of nodes in the hidden layer, weight decay, skipping flag
to allow direct connections between nodes of the input
and output layers and maximum number of iterations. Hy-
perparameter optimisation can be automatically done by

input layer hidden layer output layer

()

Figure 7. Neural network example. Each node is connected to all nodes
in the adjacent layer.

the caret package[7] made for R, which searches the best
hyperparameters in a grid search manner. We fixed skipping
flag to true and maximum number of iterations to 10,000
and left optimisation of number of nodes in the hidden layer
and weight decay to caret. As a cross validated optimisation
result, using sales records of a specific store and item, we
set number of nodes in the hidden layer to 3 and weight
decay to 1.

D. Prediction by deep neural networks

We used the h20 package[8] for R to build and train deep
neural networks. Its functionalities reflect recent advances in
deep neural network research. The most notable differences
to traditional neural networks are dropout functionality and
activation functions. Dropout is a clever way to avoid
overfitting during the training phase, by selectively ignoring
some nodes in the network in each iteration[9], as shown
in Figure 8. Target nodes of dropout are changed in each
iteration. h2o0 offers a set of popular activation functions,
which includes rectified linear unit (ReLLU), whose shape
is shown in Figure 9. ReLU is known to perform better
than the traditional sigmoid function when it is applied
to classification tasks on large and complex datasets[10].
Whether ReLLU also performs well for regression tasks on a
real world dataset has not been well documented as far as
we know.

h20’s function for training deep neural networks has a
substantial number of tunable hyperparameters, and it has a
hyperparameter optimisation functionality by a kind of ran-
domly selecting grid search like method. We optimised the
hyperparameters by using this functionality and by manual
inspection of model performance. The final hyperparameters
we adopt are 3 hidden layers, 10 nodes in each hidden layer
and the ReLU activation function.

IV. RESULTS

To visualise regional and item-wise demand differences
in a concise way, we integrate the area under demand curve
and mapped resulting values to the colour scale. Figure 10
is an item by area matrix where each item and area pair’s
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Figure 9. Activation functions.

demand is obtained by linear regression. Larger values are
mapped to lighter colours in the figure. We can clearly see
that there are area dependent item preferences.

If we change the value of weather related variables when
we estimate the demand curve, we can observe correspond-
ing changes of the estimated demand curve. In Figure 11,
the effect of temperature change to the demand for a specific
item is visualised as the same way as in the item by area
case. This item is sold better under warmer conditions, but
this effect of temperature is not apparent in Hokkaido, using
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Figure 10. Integrated demand in each region for each item modelled by

linear regression. Lighter colour indicates more demand.
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Figure 11. Integrated demand in each region in response to the temperature
change modelled by linear regression.
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Figure 12. Integrated demand in each region in response to the temperature
change modelled by neural network.

the model built by linear regression. On the other hand,
response of the demand to temperature change in Hokkaido
is as easily observable as in other areas by using a neural
network based model, as shown in Figure 12.

Comparing RMSE of the resulting models obtained with
5-fold cross validation, neural network outperforms linear
regression, as shown in Table V. Deep neural network
seems slightly outperforming neural network, even under
this relatively simple input and output setting. This result
suggests that using deep neural network would possibly be
beneficial to solve this kind of regression problems.

V. DISCUSSION

The current models do not incorporate temporal changes
of the characteristics of the consumer behaviour. Estimating
mid-term (year-by-year) baseline changes of the price and



Table V
RMSE AND RMSE STANDARD DEVIATION OF THE MODELS WITH 5-FOLD CROSS VALIDATION.

Arca | RMSE (Linear) | RMSE SD (Linear) | RMSE (Neural) | RMSE SD (Neural) | RMSE (Deep Neural) | RMSE SD (Deep Neural)
Fukuoka 0.11320 0.00089 0.11137 0.00170 0.11016 0.00104
Hokkaido 0.09364 0.00356 0.09259 0.00327 0.08527 0.00101

Osaka 0.09448 0.00151 0.08918 0.00174 0.08801 0.00098

Tokyo 0.10308 0.00095 0.09878 0.00296 0.09934 0.00160

the quantity sold, we could separate “inherent” price elastic-
ity of each item from the fluctuation component caused by
economic situations that should be examined from broader
perspectives, thus making the prediction models more pre-
cise.

Incorporating item group and category information to the
models could also improve prediction accuracy. We built the
models from fine-grained item sales data in this study. For
many items, however, there are numerous similar items in the
inventory, like colour variations and quantity variations, each
having distinct item code. If we could group these similar
items and harness expected strong correlations between
items in each group, models’ predictive power would be
improved. Each item also has a category label, and there
will be correlations between items in each category, though
weaker than that of within groups, which would be used to
augment the models as well.

VI. CONCLUSIONS

We showed that the effect of weather to the demand
of consumer goods would be different area by area, by
estimating regional demand curves. This indicates that sales
prediction models have better incorporate not only regional
differences and effect of weather, but also their interactions
as well.

We also showed that applying deep neural network meth-
ods for this class of regression problems would possibly
improve the predictive performance of the model.
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