
Tackling the Issues to Create
a Recommender:

What Are Left Unresolved?

Watanabe Takuya, Edirium K.K.

Combinatorial Approach to Machine Learning Seminar
20 September 2022, Kyushu University



Introduction

p in this presentation,
n give a broad overview of the problems we face when we want to 

construct a recommender
- by showing specific instances of the problems
- some problems are, at least tentatively, solved, others not

n do not talk about very details of each algorithm
n do not talk about "system" related matters too much
- nonetheless, to create an algorithm implementable within a system is vital

1



What is Recommender

p you can think of it as a sort of search engine
n search engine: search/display what a user want to see
n takes implicit queries as its input
- view, purchase etc.

n contrasts with "ordinary" search engines, e.g., Google Search
- take explicit queries (usually a query string) as input

2
https://www.store-raycassin.jp/



Input and Output

p input: sequence of user action
n interaction between user and item
- viewed an item
- clicked a recommended item
- register an item to my favourites
- put an item into cart
- purchased an item
- stored as (user x item x event type)

p output: sequence of the list of recommended items
n sometimes needs to output without input event
- e.g., first seen user on the top page

3



Two Approaches (1/2)

p content-based
n select recommending items based on items' content (features, 

attributes)
n query could be an item itself: item to item nearest neighbour search
n sticking to the keyword search engine analogy, it roughly corresponds to 

pre-Google search engines
- we give search keywords, and the engine returns the best match pages to the 

given keywords
- simple word vector based comparison is performed between the query and 

pages

4



Two Approaches (2/2)

p behaviour-based
n collect users' behaviour and try to draw "collective" insights from 

aggregated data
n in its purest form, does not care the content at all, e.g., collaborative 

filtering
n somewhat similar to PageRank's idea
- not the page content, but the inter-page link structure is used to rank pages

5



Content-based Recommender

p item has various attributes
n item name, description, price, category, colour, texture, size etc.

p highly domain dependent
n golf course reservation, apparel, motorbike parts etc.

p traditional content-based recommenders rely on 
textual/tabular data

p item images are also relatively easy to exploit by deep 
learning

6



Behaviour-based Recommender

p two types of collaborative filtering
n item-based
- "people watched this item also watched these items"
- offers item recommendations for an item
- PageRank equivalent, in its impact, for the recommender industry, introduced 

by Amazon
n user-based
- "people watched similar items as you also watched these items"
- offers item recommendations for an user

7

item 1 item 2 item 3 item 4 item 5

user 1 x x

user 2 x x

user 3 x x x

user 4 x x

user 5 x x

similar



General Framework

p typical development path
1. formulate a problem
2. devise an algorithm
3. implement the algorithm

p considering various aspects of the end performance, i.e. 
performance realised by the implementation
n problem should be stated in a form which leads to good performance in 

the end

8



Two Types of Performance (1/2)

p system-oriented performance
n response time (latency)
n batch processing rate (bandwidth)
n memory consumption

p goal-oriented performance
n CTR (click through rate)
n CVR (conversion rate)
n sales amount etc.

9



Two Types of Performance (2/2)

pmore subtle factors
n fit to the underlying computer architecture
n ease of implementation
n ease of analysis/interpretation, e.g.,
- what part of this calculation contributes most to the overall latency?
- why did this algorithm produce better results compared to that?

10



Good Algorithms (1/2)

p best/worst case analysis sometimes gives us a wrong 
impression
n e.g., Quicksort
- its worst case time complexity is as bad as bubble sort, i.e. O(n2)
- no one cares!

n same applies to upper/lower bound analysis for goal-oriented 
performance

pwhat we want are:
n algorithms practically work well in most cases

11



Good Algorithms (2/2)

pwhat kind of algorithms are good?
n fast
- not necessarily corresponds to small time complexity
- constant/lower order portion sometimes greatly affects in practice

n small memory footprint
- likewise, not necessarily corresponds to small space complexity
- programming language's memory management implementation needs to be 

considered
n produce good, hopefully superior, CTR/CVR etc.

p above objectives often contradicts each other
n engineers seek to find a best balance
n order of the above objectives vaguely represents their priority

12



Construct a Recommender

p at first, we need something working well for each user
n create a content-based recommender, sensitive to user's view history

p then, we want to consider overall user behaviour
n implement collaborative filtering (batch processing)

p how to combine the above two?
n create an "ensemble" mechanism to mix recommendations

p how to compare performance of ensembles? how to deal with 
"atypical" cases?
n create an A/B testing mechanism with fallback paths

p how to adjust each ensemble's share based on goal-oriented 
performance
n implement a multi-armed bandit problem based optimiser

p also want image analysis?
n yes!

13



System Overview

p browser (client-side)
n script tag

p API server
p data storage
p batch server
pmanagement console

14

data 
storage

web page

<script>
...

</script>

API server

batch server

management 
console

stats

settings

events

batch processing results

events

batch processing results

eventsrecommendations



Create a Content-based Recommender

p a simple content-based recommender
n query: item of the currently viewing page
n nearest neighbour search from the above item
n recommend k-nearest neighbours

p problems:
n results are fixed per item
n computationally expensive (> 10M items)
- can be batch processed

15



History Sensitive Content-based 
Recommendation
p take item view history into consideration

n give diminishing weights to each item viewed previously
n calculate the "centre" of viewed items
- for simple numerical attribute, take weighted average
- for string attribute, take weighted mixture of bag-of-words vectors

n nearest neighbour search from the "centre"
n recommend k-nearest neighbours

p problems:
n treat each attribute equally
- user would have different degrees of interest on each attribute

n computationally expensive (> 10M items)
- can NOT be batch processed

16

t-4 t-3 t-2 t-1 t

item 1 item 5 item 3 item 2 item 4

0.2 0.4 0.6 0.8 1.0



Attribute Weight Adjustment

p simple assumption:
n attributes with low deviation: fairly interested
n attributes with high deviation: not so interested

p in addition to the "centre" calculation,
n calculate each attribute's deviation from item view history
n take inverse of the deviation as attribute weight
n nearest neighbour search from the "centre", with each attribute 

weighted accordingly
n recommend k-nearest neighbours

p problems:
n just heuristics, not statistically controlled nor supervised
n computationally expensive (> 10M items)
- can NOT be batch processed

17



Implement Collaborative Filtering

p based on user-item event matrix,
n item-based
- matrix multiplication to get item-item matrix

n user-based
- matrix multiplication to get user-user matrix
- extract frequently seen items from nearest users

p problems:
n results are relatively static (change not so much over time)
n computationally expensive (> 10M items, > 10M users)
- can be batch processed

18

U

I

I

U

x I

I

=EET



Time-aware Collaborative Filtering

p users' (collective) interest may change periodically
n e.g., what typically I want most in Monday and one in Sunday may be 

different

p take event occurring time into consideration
n slice user-item event matrix to make per day event matrix
n give each slice a temporal weight
n take weighted sum of per day matrices to obtain global event matrix
n do matrix calculation

p problems:
n just heuristics, not statistically controlled nor supervised
n computationally expensive (> 10M items, > 10M users)
- can be batch processed

19



Algorithm Selection

p now we have a content-based recommender and collaborative 
filtering
n how do we choose/combine algorithms

pmanually select an algorithm for each recommendation area?
n this is what traditional recommenders offer

p problems:
n we have two probably good algorithms, but cannot use both at the 

same time
n cannot compare algorithms' goal-oriented performance

20



Rank-based Ensemble (1/2)

p combine multiple recommenders' output by their ranking
n give each rank a weight (inverse of rank)
n take sum of each item's weight
n sort items keyed by the above weight sum

21

rank 1 2 3 4 5

weight 1.0 0.5 0.33 0.25 0.2

output 1 item 2 item 3 item 5 item 1 item 4

output 2 item 3 item 1 item 4 item 5 item 2

rank 1 2 3 4 5

weight 1.5 1.2 0.75 0.58 0.53

output item 3 item 2 item 1 item 5 item 4

original rankings

combined ranking



Rank-based Ensemble (2/2)

pwhy rank based? why not based on scores?
n each algorithm has different internal scoring mechanism, so it is difficult 

to properly normalise scores
n rank is more robust, in my opinion (not observation)

p problems:
n just heuristics, not statistically controlled nor supervised
n cannot compare algorithms' goal-oriented performance

22



Algorithm Hierarchy

p sometimes there is no clue as to who the user is
n no previous item view history, viewing top page
n what to recommend?
- both content-based and collaborative filtering do not work

p need a fallback algorithm
n view/purchase ranking would be appropriate

p but if there is no ranking under specific circumstances, e.g., 
for a specific category?
n randomly show something
- better than nothing, probably

p problems:
n algorithm performance may be path dependent
- e.g., ranking performance padding after other algorithms and pure ranking 

performance would be different
n latency prediction much more difficult 23

cb/cf ensemble

ranking

random



A/B testing with Algorithm Hierarchy

pwant to compare performance of different algorithms
n under equal conditions as far as possible

p specify A/B testing groupings within algorithm hierarchy
n place multiple algorithms per layer
n assign an algorithm to each session according to the specified ratio

p problems:
n need manual evaluation/tuning as a next step
n need to split data (session)
- may be too sparse

n latency prediction much more difficult

24

ensemble 1 / ensemble 2

ranking

random



Optimising Algorithm Share (1/2)

p adjusting algorithm share can be seen as a multi-armed bandit 
problem
n want to reliably measure each algorithm's goal-oriented performance 

(exploration)
n want to achieve good overall goal-oriented performance (exploitation)
n have to be done online

25



Optimising Algorithm Share (2/2)

p Thompson sampling
n reward is 1/0 (recommendation is clicked or not) ~ Bernoulli distribution
n want to estimate probability distribution of expected reward ~ beta 

distribution
n sample from beta(number of 1s, number of 0s) for each algorithm, 

choose the best one
- batch sampling is more efficient

p problems:
n there would be interactions between algorithms/ensembles
n algorithm hierarchy itself should be subject of optimisation
- need a meta-heuristics?

26



Image Analysis

pwant to choose items with similar images
p very standard/straightforward pipeline

n autoencoder based embedding extraction
n nearest neighbour search on embedding space
n return k-nearest neighbours

p problems:
n items have multiple images
n computationally expensive (> 10M items)
- can be batch processed

27

input image matrix

output image matrix

embedding

CNN

CNN



Applying Rank-based Ensemble Technique to 
Images
p combine multiple nearest neighbour search results

n calculate k-nearest neighbour images for each image
n make a list of items to which those k-nearest images belong for each 

image
n combine item lists in a rank-based ensemble way

p problems:
n not particularly good for items which have many images
n computationally expensive (> 10M items)
- can be batch processed

28



Conclusion

p lot of heuristics, although we believe they perform generally 
well, statistical regulation/modelling may better be 
incorporated

p extensive use of nearest neighbour search
n batch nearest neighbour search can be processed efficiently in 

vectorised (matrix) form
n online nearest neighbour search under latency constraint (< 100 ms) is a 
big problem
- huge neural networks often exhibit memory-based characteristics, could be 

substitutes for nearest neighbour search
- essentially, transferring online computation cost of the nearest neighbour

search to batch computation cost of model training

29


